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Some remarks are herein made concerning the question of the lineariza- 
tion of the equations of plastic flow as applied to the simple problem 
of the drawing of a thin tube through a frictionless conical die (Fig. 1). 

I 

Fig. 1. Fig. 2. 

We define the stress- and strain-rate fields in the conical tube by 
the stress components 01, u2 the rate-of-strain components 61, t2 and 
the radial velocity v, remembering that 

dv v 
El=%> e2 =- r 

The differential equation of equilibrium of the conical tube of thick- 
ness h has the form 

(1) 

while the plasticity condition is 

@ (Gl, ad = OS (2) 

The relations between the stress components and the rate-of-strain 
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components are 

which lead to 

dz, u 
& -t II2 y- = 0, 

m 1 dSl 
1’1 -= -- @F2 (3) 

The usual condition of incompressibility of the material requires 
that 

We note that even small variations in the function 3 may cause 
changes in da/ 8 al and d@/ 6’ o2 t and hence in the coefficient m. 

large 

A solution of the above problem obtained by Swift [ 1 1 was based on 
the usual plasticity condition 

iT12 - cfroz + CT25 == CT,% 

which may be represented by an ellipse in the ul’ a2-plane. The stress 
components ul, a2 at the place where the tube enters the die and at the 
place where it leaves it are depicted by the points A and B (Fig. 2). 
From this it is clear that 

The stress components al and a2 in this solution, as well as the 
radial velocity v and the thickness h, may be represented in closed form, 
and 

rrh = (Ic-t&o 

We note that for b/a = 0.425, the Principal Stress a2 at the Point 
where the tube leaves the die is equal to zero, while the ratio h/he = 
1.054. 

A graph of the function h/h,, which determines the variation of the 
thickness of the conical tube along a generator, is shown in Fig. 3. 

A solution of the same problem was presented by Prager [: 2 1 for a 
linearized plasticity condition 

!.l”I -- oz = (I, 

which can be represented by a straight line in the ul, u2-plane. 

The stress components ul, u2 at the place where the tube enters the 
die and the place where it leaves it are denoted by the points A and B, 
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Fig. 3. 

as before. It is clear that 

Fig. 4. 

CD = pu1 - 02, m = p 

The stress components aI and ug take the form 

o1 = o, In a 
( 

a 
P ’ oz-= 13, pin--1 r 1 (5) 

and the radial velocity v and thickness h are 

The parameter ~1 should be determined from the condition that the 
stress components al and a2 at r = b satisfy the relation 

012 - cl102 -i_ 022 = CT,2 

or that the point B lie on an arc of the ellipse. 

This condition determines the relation 

which yields 

b/a = 0.4 
P = 0.927 

:: ;*9 0.6 0.7 
0.702 U.637 E84 :: !39 Zoo 

We remark that for a ratio b/a = 0.368, i.e. for p = 1, the stress 
component a2 at the point where the tube leaves the die is equal to zero, 
while the thickness of the tube is the same everywhere, i.e. h = h,. 

Curves of the function h/h,,, representing the variation in the thick- 
ness of the conical tube along a generator, are presented for various 
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values of b/a from 0.4 to 1.0 in Fig. 4. 

Comparison of the graphs of the functions h/h0 in Figs. 3 and 4 shows 

that they have different forms, although the corresponding stress compo- 

nents 01 at the place where the tube leaves the die are in fairly close 

agreement. 
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